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Abstract

Linear Support Vector Machines trained on HOG
features are now a de facto standard across many visual
perception tasks. Their popularisation can largely be at-
tributed to the step-change in performance they brought
to pedestrian detection, and their subsequent successes
in deformable parts models. This paper explores the in-
teractions that make the HOG-SVM symbiosis perform
so well. By connecting the feature extraction and learn-
ing processes rather than treating them as disparate plu-
gins, we show that HOG features can be viewed as doing
two things: (i) inducing capacity in, and (ii) adding
prior to a linear SVM trained on pixels. From this
perspective, preserving second-order statistics and lo-
cality of interactions are key to good performance. We
demonstrate surprising accuracy on expression recogni-
tion and pedestrian detection tasks, by assuming only
the importance of preserving such local second-order in-
teractions.

1. Introduction

Despite visual object detectors improving by leaps
and bounds in the last decade, they still largely
rely on the same underlying principles: linear Sup-
port Vector Machines (SVMs) trained on Histogram
of Oriented Gradient (HOG) features. When HOG
features were introduced, they improved upon exist-
ing methods for pedestrian detection by an order of
magnitude [5]. Since then, the HOG-SVM pipeline
has been used in the deformable parts model of [9],
its derivatives, and high achievers of the PASCAL
VOC challenge. A keyword search for “HOG” and
“SVM” in the PASCAL 2012 results page returns 25
and 18 hits respectively. HOG is now complicit in
detection pipelines across almost every visual detec-
tion/classification task [5, 7, 20, 21].

In this paper we peel back the layers of complex-
ity from HOG features to understand what underlying
interactions drive good performance. In particular,

• HOG features can be viewed as an affine weighting
on the margin of a quadratic kernel SVM,

• underlying this prior and added capacity is the
preservation of local pixel interactions and second-
order statistics,

• using these foundational components alone, we
show it is possible to learn a high performing
classifier, with no further assumptions on images,
edges or filters.

2. Representing HOG features as a linear
transform of pixels

HOG features can be described as taking a nonlinear
function of the edge orientations in an image and pool-
ing them into small spatial regions to remove sensitivity
to exact localisation of the edges. A pictorial represen-
tation of this pipeline is shown in Figure 1. This type
of representation has proven particularly successful at
being tolerant to non-rigid changes in object geometry
whilst maintaining high selectivity [8].

The exact choice of non-linear function is discre-
tionary, however Dalal and Triggs try f(x) = |x| and
f(x) = |x|2. Both functions remove the edge direction,
leaving only a function of the magnitude. In this pa-
per, we choose to use the square of edge directions. Our
choice is motivated by a number of reasons. First, the
square function leads to greater flexibility in manipu-
lation, which we show becomes vital in our later refor-
mulation. Second, there are proponents of the squaring
function (referred to as “square” or “L2” pooling) in
convolutional network literature [1, 14], whose archi-
tectures have a similar pipeline to HOG features per
layer, and have shown exciting results on large-scale
visual recognition challenges [16]. Finally, the square
function has a good basis in statistical models of the
primary visual cortex [13].

Following the notation of [3], the transform from
pixels to output in HOG features can be written as,

Φf (x) = Db ∗ [(gf ∗ x)� (gf ∗ x)] , (1)
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�f (x) = Db ⇤ [(gf ⇤ x) � (gf ⇤ x)]
Figure 1. An illustration of the HOG feature extraction process and how each component maps to our reformulation.
Gradient computation is achieved through convolution with a bank of oriented edge filters. The nonlinear transform is
the pointwise squaring of the gradient responses which removes sensitivity to edge contrast and increases edge bandwidth.
Histogramming can be expressed as blurring with a box filter followed by downsampling.

where a vectorized input image x ∈ RD is convolved
with an oriented edge filter gf [6], rectified through
the Hadamard operator (pointwise square), then finally
blurred with b and downsampled by the sparse selec-
tion matrix D to achieve pooling/histogramming. Per-
forming this operation over a bank of oriented edge fil-
ters and concatenating the responses leads to the final
descriptor,

Φ(x) = [Φ1(x) Φ2(x) . . . ΦF (x)] . (2)

This reformulation omits the contrast normalization
step, which we address later in the piece. We showed
previously in [3] that each sub-descriptor can be ex-
pressed in the form,

Φf (x) = DBM(Gf ⊗Gf )(x⊗ x) , (3)

where M is a selection matrix and capitalized B, G are
matrix forms of their convolutional prototypes. The
full response to a bank of filters can be written as,

Φ(x) = L(x⊗ x) , (4)

where the projection matrix L is formed by concate-
nating the bank,

L =

BM(G1 ⊗G1)
...

BM(GF ⊗GF )

 . (5)

Under this reformulation, HOG features can be
viewed as an affine weighting of quadratic interactions
between pixels in the image. This suggests that the
good performance of HOG features is down to two
things: (i) second-order interactions between pixels,
and (ii) the choice of prior that forms the affine weight-
ing L.

3. Capacity of the Classifier

When used in a support vector classification set-
ting, the projection matrix L can be absorbed into the

margin,

w∗ = arg min
w,ξi≥0

1

2
wT (LTL)−1w + C

l∑
i=1

ξi (6)

subject to yiw
T (xi ⊗ xi) > 1− ξi, i = 1 . . . l

leaving as the data term only interactions between the
weights w and the Kronecker expansion of the image.

Remark 1 When the weighting is the identity matrix,
( i.e. L = I), Equation (6) reduces to an SVM with a
unary quadratic kernel.

The first part of the HOG story, the induced prior,
can thus be quantified as being quadratic. The weight-
ing matrix is therefore intrinsically a prior on the mar-
gin of a quadratic kernel SVM.

4. Secord-Order Interactions

The term (x⊗ x) in Equation (4) can alternatively
be written as,

(x⊗ x) = vec(xxT ) , (7)

which is the vectorized covariance matrix of all pixel
interactions. [19] showed that the covariance of a local
image distribution is often enough to discriminate it
from other distributions. However, when dealing with
high-dimensional distributions, computing a full-rank
covariance matrix is often difficult. [10] circumvent this
problem by assuming stationarity of background im-
age statistics (a translated image is still an image), as
well as limiting the bandwidth of interactions between
pixels. Simoncelli [18] showed that these assumptions
are reasonable, since correlations between pixels fall
quickly with distance (see Figure 2).

To improve conditioning and prevent overfitting the
classifier to hallucinated interactions, we consider the
most general set of local second-order features: the set
of all local unary second-order interactions in an image,

Ψ(x) = [vec{S1(x)}T , . . . , vec{SD(x)}T ]T (8)
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Figure 2. An illustration of the locality of pixel correlations in natural images. Whilst a single pixel displacment exhibits
strong correlations in intensity, there are few discernible correlations beyond a 5 pixel displacement. Locality is also observed
in the human visual system, where cortical cells have finite spatial receptive fields.

where,

Si(x) = Pixx
TPTi , (9)

Pi is simply an M × D matrix that extracts an M
pixel local region centred around the ith pixel of the
image x. By retaining local second-order interactions,
the feature length grows from D for raw pixels to M2D.

Fortunately, inspection of Equation (8) reveals a
large amount of redundant information. This redun-
dancy stems from the re-use of pixel interactions in
surrounding local pixel locations. Taking this into ac-
count, and without loss of information, one can com-
pact the local second-order feature to MD elements,
so that Equation (8) becomes,

Ψ∗(x) =

 (e1 ∗ x)T ◦ xT
...

(eM ∗ x)T ◦ xT

 . (10)

where {em}Mm=1 is the set of M impulse filters that
encode the local interactions in the signal.

5. Local Second-Order Interactions

Consider two classes A and B. Class A represents the
distribution of all natural images. Class B represents a
noise distribution which has the same frequency spec-
trum as natural images, namely 1

f [18]. Both distribu-
tions are power normalized. We sample 25000 train-
ing and testing examples from each class, and train
two classifiers: one preserving the raw pixel informa-
tion and one preserving local second-order interactions
of the pixels. The goal of the classifiers is to predict
“natural” or “noise.” An illustration of the experi-
mental setup and the results are presented in Figure
3. The pixel classifier fails to discriminate between
the two distributions. There is no information in ei-
ther the spatial or Fourier domain to linearly separate
the classes (i.e. the distributions overlap). By preserv-
ing local quadratic interactions of the pixels, however,

the classifier can discriminate natural from synthetic
almost perfectly.

Whilst the natural image and noise distributions
have the same frequency spectra, natural images are
not random: they contain structure such as lines, edges
and contours. This experiment shows that image struc-
ture is inherently local, and more importantly, that lo-
cal second-order interactions of pixels can exploit this
structure. Without encoding an explicit prior on edges,
pooling, histogramming or blurring, local quadratic in-
teractions have sufficient capacity to exploit the statis-
tics of natural images, and separate them from noise.

6. Replacing prior with posterior:
learning over pixels

Quadratic kernel SVMs have not historically per-
formed well on recognition tasks when learned using
pixel information. The image prior that HOG encodes,
and the affine weighting that it can be distilled into, is
integral to obtaining good generalisation performance.
We know, however, that a prior is simply used to reflect
our belief in the posterior distribution in the absence
of actual data. In the case of HOG, the prior encodes
insensitivity to local non-rigid deformations so that the
entire space of deformation does not need to be sam-
pled to make informed decisions.

This is usually a reasonable assumption to make,
since sampling the posterior sufficiently may be infea-
sible. Take, for example, the task of pedestrian detec-
tion. The full posterior comprises all possible combina-
tions of pose, clothing, lighting, race, gender, identity,
background and any other attribute that manifests in
a change to the visual appearance of a person. Multi-
scale sliding window HOG detectors (with pose elastic-
ity in the case of DPMs) work to project out as much
of this intra-class variation as possible.

Is it possible to learn a detector using only the as-
sumptions that underlie HOG features: the preserva-
tion of local second-order interactions? How much data
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Figure 3. Thought-experiment setup. (a) contains an ensemble of samples drawn from the space of natural images with
a 1

f
frequency spectrum, (b) contains an ensemble of samples drawn from a random noise distribution with the same 1

f

frequency spectrum. (c) We train two linear classifiers to distinguish between “natural” or “noise.” The pixel-based classifier
does not have the capacity to discriminate between the distributions. The classifier which preserves local quadratic pixel
interactions almost perfectly separates the two distributions.

is required to render the HOG prior unnecessary, and
what sort of data is required? Can the data just be
perturbations of the training data? Does the result-
ing classifier learn anything more specialized than one
learned on HOG features? In the following section we
aim to provide answers to these questions.

Hypothesis 1 If HOG features are doing what we in-
tend - providing tolerance to local geometric misalign-
ment - then it should be possible to reproduce their ef-
fects by sampling from a sufficiently large dataset con-
taining geometrically perturbed instances of the original
training set.

Learned Features: It is the firm belief of many that
learned features are the way forward [11]. Convolu-
tional network literature has heavily relied on learned
features for a number of years already [15, 17]. We
take feature learning to its most primitive form, set-
ting only the capacity and distribution of features, and
letting the classifier learn the rest.

7. Methods

We designed an experiment where we could control
the amount of geometric misalignment observed be-
tween the training and testing examples. We used the
Cohn Kanade+ expression recognition dataset, consist-
ing of 68-point landmark, broad expression and FACS

labels across 123 subjects and 593 sequences. Each se-
quence varies in length and captures the neutral and
peak formation of facial expression. In this paper we
consider only the task of broad expression classifica-
tion (i.e. we discard FACS encodings). To test the
invariance of different types of features to geometric
misalignment, we first register each training example
to a canonical pose, then synthesize similarity warps of
the examples with increasing RMS point error.

Why Faces?: HOG features have been used across
a broad range of visual recognition tasks, including
object recognition, scene recognition, pose estimation,
etc. Faces are unique, however, since they are a heav-
ily studied domain with many datasets containing sub-
jects photographed under controlled lighting and pose
conditions, and labelled with ground-truth facial land-
marks. This enables a great degree of flexibility in
experimental design, since we can programatically set
the amount of geometric misalignment observed while
controlling for pose, lighting, expression and identity.

We synthesize sets with 300, 1500, 15000 and 150000
training examples. The larger the synthesized set, the
greater the coverage of geometric variation. We use
HOG features according to Felzenszwalb et al . [9] with
18 orientations and a spatial aggregation size of 4. For
the reformulation of Equation (2), we use Gabor fil-
ters with 18 orientations at 4 scales, and a 4 × 4 blur
kernel. The local quadratic features have a spatial sup-
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(a) 0-pixel error

(b) 10-pixel error
Figure 4. Illustrative examples of subjects from the Cohn
Kanade+ dataset with (a) zero registration error, and (b)
10 pixels of registration error.

port equal to the amount of RMS point error (i.e. at
10 pixels error, correlations are collected over 10 × 10
regions). All training images are 80 × 80 pixels and
cropped around only the faces. Figure 4 illustrates the
degree of geometric misalignment introduced.

Contrast Normalization: So far we have neglected
to mention contrast normalization, the final stage in
the HOG feature extraction pipeline, and a component
that has traditionally received much attention, partic-
ularly in neuroscience literature [4]. Whilst contrast
normalization is an integral part of HOG features, we
do not believe it plays a significant role in their invari-
ance to geometry. Since our model does not explain
the highly nonlinear process of contrast normalization,
we instead power normalize images in the expression
recognition experiment, and pre-whiten images in the
pedestrian detection experiment.

Learning: The storage requirements of local quadratic
features quickly explode with increasing geometric er-
ror and synthesized examples. At 10 pixels RMS error,
150000 training examples using local quadratic features
takes 715 GB of storage. To train on such a large
amount of data, we implemented a parallel support vec-
tor machine [2] with a dual coordinate descent method
as the main solver [12]. Training on a Xeon server us-
ing 4 cores and 24 GB of RAM took between 1 – 5
days, depending on problem size. We used multiple
machines to grid search parameters and run different
problem sizes.

Figure 5 shows a breakdown of the results for syn-
thesized sets of geometric variation. Pixels (shown in
shades of green) perform consistently poorly, even with
large amounts of data. HOG features (in blue, and re-
formulation in aqua) consistently perform well. The
performance of HOG saturates after just 1500 training
examples. [23] talk about the saturation of HOG at
length, noting that more data sometimes decreases its
performance.

Local quadratic features (shown in red) have a
marked improvement in performance with increasing
amounts of data (roughly 10% per order of magnitude

of training data). Synthesizing variation used to be
quite popular in some vision circles, particularly face
recognition through the use of AAMs [22], however it
seems to have gone out of fashion in object recognition.
Our results suggest that a model with sufficient capac-
ity could benefit from synthesized data, even on general
object recognition tasks (see Pedestrian Detection).

Only when the dataset contains ≥ 100000 exam-
ples do the local quadratic features begin to model
non-trivial correlations correctly. With 150000 training
samples, local quadratic features perform within 3% of
HOG features.

Pedestrian Detection: We close with an example
showing how the ideas of locality and second-order in-
teractions can be used to learn a pedestrian detector.
We don’t intend to outperform HOG features. Instead
we show that our insights are important for good per-
formance, in contrast with a pixel-based classifier.

We follow a similar setup to our earlier expression
recognition experiment on INRIA person. We gener-
ate synthetic similarity warps of each image, making
sure they remain aligned with respect to translation.
Figure 6 illustrates how the addition of synthesized ex-
amples does not change the dataset mean appreciably
(misalignment would manifest as blur). We train the
SVM on 40,000 positive examples and 80,000 negative
examples, without hard negative mining.

The results are striking. Unsurprisingly, the pixel-
based classifier has high detection error, whilst the
HOG classifier performs well. The local-quadratic clas-
sifier falls between the two, with an equal error rate
of 22%. The improved performance can be attributed
solely to the added classifier capacity and its ties to
correlations within natural image statistics.

8. Discussion

We began the piece on the premise that HOG fea-
tures embody interactions requisite to good recogni-
tion performance. Their popularity and success on
current object recognition benchmarks supports this,
at least empirically. Expanding on the work of [3], we
showed that HOG features can be reformulated as an
affine weighting on the margin of a quadratic kernel
SVM. One can take away two messages from this: (i) a
quadratic classifier has sufficient capacity to enable dis-
crimination of visual object classes, and (ii) the actual
image prior is captured by the weighting matrix. We
performed an experiment where classifiers were tasked
with discriminating between “natural” and “noise” im-
ages, and found that the quadratic classifier preserving
only local pixel interactions was able to separate the
two classes, suggesting that the structure of natural im-
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Figure 5. Broad expression classification accuracy for different feature representations as a function of alignment error and
amount of training data. For each feature representation we synthesized 300, 1500, 15000 and 150000 training examples.
The held out examples used for testing always come from an unseen identity. HOG features quickly saturate as the amount
of training data increases. Quadratic features, shown in red, have poor performance with only a small number of synthesized
examples, but converge towards the performance of HOG as the space of geometric variation is better spanned. Quadratic
features appear to improve by roughly 10% per order of magnitude of training data, until saturation.

(a) (b)

Figure 6. The pixel mean of positive examples from the
INRIA training set, (a) only, and (b) with 20 synthesized
warps per example. The mean is virtually the same, sug-
gesting that the synthesized examples are not adding ridig
transforms that could be accounted for by a multi-scale
sliding-window classifier.
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Figure 7. Precision recall for different detectors on the
INRIA person dataset. HOG performs well and pixels per-
form poorly, as expected. Local second-order interactions
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achieving HOG-like performance.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Visualisations of HOG and local quadratic classifiers on the INRIA person dataset. (a) A sample image from
the set and its equivalent representation in (b) HOG space, and (e) local quadratic space. Lighter shades represent strong
edges and correlations respectively. The positive training set mean in (c) HOG space and (f) local quadratic space. Positive
weights of the final classifiers in (d) HOG space and (g) local quadratic space. In both HOG and local quadratic space,
the visualization of individual images shows significant extraneous informative, however the final classifiers are clearer.
Interpreting the local quadratic classifier in (g) is difficult since the correlations cannot be interpreted as edges, however the
distribution of positive weights is similar to HOG, especially around the head and shoulders and between the legs.

ages can be exploited by local second-order statistics.
Armed with only these principles, we set out to discover
whether it was possible to learn an accurate classifier in
a controlled expression recognition setting, and quan-
tify how much data was required for varying amounts
of geometric misalignment. Figure 5 illustrates that
with enough synthesized data, a local quadratic clas-
sifier can learn non-trivial pixel interactions necessary
for predicting expressions. Finally, we applied these in-
sights to a pedestrian detection task, and show in Fig-
ure 7 that a significant fraction of HOG’s performance
can be attributed to preserving local second-order pix-
els interactions, and not the image specific prior (i.e.
edges) that it encodes. Inspecting the local quadratic
classifier visualization from Figure 8, one can see that
emphasis (strong positive support weights represented
by lighter shades) is placed on the object boundaries -
specifically around the head and shoulders and between
the legs - just as HOG does.

9. Conclusions

Linear SVMs trained on HOG features have per-
vaded many visual perception tasks. We hypothesized
that preserving local second-order interactions are at
the heart of their success. This is motivated by similar
findings within the human visual system. With these
simple assumptions combined with large amounts of
training data, it is possible to learn a classifier that per-
forms well on a constrained expression recognition task,
and within ballpark figures of a HOG-based classifier
tailored specifically to an image prior on a pedestrian
detection experiment. As the size of datasets contin-
ues to grow, we will be able to rely less and less on
prior assumptions, and instead let data drive the mod-
els we use. Local second-order interactions are one of
the simplest encoders of natural image statistics that
ensure such models have the capacity to make informed
predictions.
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