
In Defense of Gradient-Based Alignment
on Densely Sampled Sparse Features

Hilton Bristow and Simon Lucey

Abstract In this chapter, we explore the surprising result that gradient-
based continuous optimization methods perform well for the alignment of
image/object models when using densely sampled sparse features (HOG,
dense SIFT, etc.). Gradient-based approaches for image/object alignment
have many desirable properties – inference is typically fast and exact, and
diverse constraints can be imposed on the motion of points. However, the pre-
sumption that gradients predicted on sparse features would be poor estima-
tors of the true descent direction has meant that gradient-based optimization
is often overlooked in favour of graph-based optimization. We show that this
intuition is only partly true: sparse features are indeed poor predictors of the
error surface, but this has no impact on the actual alignment performance.
In fact, for general object categories that exhibit large geometric and ap-
pearance variation, sparse features are integral to achieving any convergence
whatsoever. How the descent directions are predicted becomes an important
consideration for these descriptors. We explore a number of strategies for
estimating gradients, and show that estimating gradients via regression in a
manner that explicitly handles outliers improves alignment performance sub-
stantially. To illustrate the general applicability of gradient-based methods
to the alignment of challenging object categories, we perform unsupervised
ensemble alignment on a series of non-rigid animal classes from ImageNet.

Hilton Bristow
Queensland University of Technology, Australia. e-mail: hilton.bristow@gmail.com

Simon Lucey

The Robotics Institute, Carnegie Mellon University, USA. e-mail: slucey@cs.cmu.edu

1



2 Hilton Bristow and Simon Lucey

1 Notation

Before we begin, a brief aside to discuss notation in the sequel. Regular
face symbols (i.e. n,N) indicate scalars, with lowercase variants reserved
for indexing and uppercase for ranges/dimensions; lowercase boldface sym-
bols (i.e. x) indicate vectors; uppercase boldface symbols (i.e. J) indicate
matrices, and uppercase calligraphic symbols (i.e. I) indicate functions. We
refer to images as functions rather than vectors or matrices to indicate that
non-integer pixels can be addressed (by sub-pixel interpolation). This is nec-
essary since the output coordinates of warp functions can be real valued. The
notation I : RD×2 → RD indicates the sampling of D (sub-)pixels. To keep
notation terse – and hopefully more readable – we often vectorize expressions.
Therefore, in many instances, functions have vector-valued returns, though
we endeavour to be explicit when this happens (as above).

2 Introduction

The problem of object or image alignment involves finding a set of parameters
∆x that optimally align an input image I to an object or image model,

∆x∗ = arg min
∆x
D{I(x +∆x)}+A{∆x}. (1)

Under this umbrella definition of alignment, we can instantiate particular
models of optical flow, pose estimation, facial landmark fitting, deformable
parts modelling and unsupervised alignment commonly encountered in com-
puter vision. D : RD → R is the continuous loss function which measures the
degree of fit of the image observations to the model. I : RD×2 → RD is the
image function which samples the (sub-)pixel values at the given locations,
and we use the shorthand x = [xT1 , . . . ,x

T
D]T , I(x) = [I(x1+x1), . . . , I(xD+

xD)]T where xi = [xi, yi]
T is the ith x− and y− discrete coordinates sam-

pled on a regular grid at integer pixel locations within the continuous image
function. A : R2D → R is the regularization function that will penalize the
likelihoods of each possible deformation vector ∆x. For example in optical
flow, deformation vectors that are less smooth will attract a larger penalty.
In the case of parametric warps (affine, similarity, homography, etc.) the reg-
ularization function acts as an indicator function which has zero cost if the
deformation vector adheres to the desired parametric warp or infinite cost if
it does not. In reality the alignment function D can be as complicated as a
support vector machine [7], mutual information [8], or deep network [24], or
as simple as the sum of squared distances (SSD) between an input image and
a fixed template.

Since pixel intensities are known to be poor estimators of object/part sim-
ilarity, it is common in alignment strategies to instead use a feature mapping
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function,

∆x∗ = arg min
x
D{Φ{I(x +∆x)}}+A{∆x} (2)

where Φ : RD → RDK is a non-linear transformation from raw pixel intensi-
ties to densely sampled sparse features such as HOG [7] or SIFT [14]. K refers
to the number of channels in the feature. In HOG and SIFT for example,
these channels represent gradient orientation energies at each pixel location.
In general one can attempt to solve either alignment objective (Eq. 1 and
2) in one of two ways: (i) graph-, or (ii) gradient- based search. The choice
is largely problem specific, depending on the type of alignment and regu-
larization function. We expand upon these considerations in the following
subsections.

An especially important factor for gradient-based search strategies is the
accuracy of the linearization matrix function of the representation (whether
raw pixel intensities or densely sampled sparse features) with respect to the
deformation vector. The linearization matrix function, or gradient as it is
often referred to in computer vision, attempts to estimate an approximate
linear relationship between the representation function and the deformation
vector ∆x over a restricted set of deformations. In this chapter we attempt to
answer the question: does the accuracy of this linearization reflect its utility
in gradient search alignment?

We argue that gradient search alignment strategies are often needlessly
dismissed, as the linearization of Φ{I(x)} of most natural images is poor
in comparison to that obtained from I(x). We demonstrate empirically and
with some theoretical characterization, that in spite of the poor linearization
approximations of sparse features like SIFT and HOG, they actually enjoy
superior gradient search alignment performance in comparison to raw pixel
representations. We believe this result to be of significant interest to the
computer vision community.

3 Search Strategies for Alignment

Graph-Based Search

If computation time was not an issue one would simply exhaustively search
all finite deformation vectors ∆x in order to find the global minima. This
brute force strategy is tractable for coarse-to-fine sliding-window detectors
such as Viola & Jones [22], but intractable for nearly all other deformations
of interest within the field of computer vision. If the set of allowable displace-
ments ∆x is discretized and the function of parameters A constrained to obey
a particular graphical structure (e.g . tree, star or chain), efficient graph op-
timization methods such as dynamic programming (i.e. belief propagation)
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can be applied to solve for the globally optimal dformation in polynomial
time. A prominent example can be found in deformable parts models whose
ensemble of local part detectors are restricted to search discrete translations
and scales, but with additional constraints placed on the spatial layout of the
parts. If the dependencies between the parts can be represented as a tree,
one can search all possible deformations (in order to find a global minima)
in a computationally tractable manner via dynamic programming [11].

Although graphical models have proven popular in the alignment liter-
ature, they still face a number of problems. Inference in graphical models
is difficult and inexact in all but the simplest models such as tree- or star-
structured graphs. For example, in the application of graph-based search to
optical flow – termed SIFT Flow [13] – the regularization on the 2D smooth-
ness of the flow prevents the allowable warps from being factored into a tree
structure. Instead, the authors employ an alternation strategy of enforcing
the smoothness constraint in the x− and then y− directions (each of which
independently can be represented as a tree structure) using dual-layer belief-
propagation to find an approximate global solution. In many other cases,
simplified tree- or star-structured models are unable to capture important
dependencies between parts, so are not representative of the underlying struc-
ture or modes of deformation of the object being modelled [27]. The limited
expressiveness of these simple models prevents many interesting constraints
from being explored, which has led to the study of discrete but non-graphical
models [17].

Gradient-Based Search

An alternative strategy for solving Eqn. 1 in polynomial time is through
non-linear continuous optimization methods. This class of approaches lin-
earize the system around the current estimate of the parameters, perform
a constrained/projected gradient step then update the estimate, iterating
this procedure until convergence. We refer to this strategy in the sequel as
gradient-based.

Gradient-based search methods can be categorized as deterministic or
stochastic. Deterministic gradient estimation can be computed in closed form
and is computationally efficient. This requires the alignment function to be
continuous and deterministically differentiable. Stochastic gradient estima-
tion involves the sampling of a function with respect to its parametric input
in order to estimate a first or second order relationship between the func-
tion and the input and can be computationally expensive (especially when
one is trying to establish second order relationships). Both methods, when
applied to object or image alignment, employ stochastic gradient estimation
methods at some level. Deterministic methods estimate stochastic gradients
on the representation, and then leverage closed form first and second order
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derivative information of the alignment function. Stochastic methods, how-
ever, estimate stochastic gradients directly from the objective [25].

Deterministic gradient-based search methods have a long history in align-
ment literature [5, 10, 12, 26]. The most notable application of this concept is
the classic Lucas & Kanade (LK) algorithm [15], which has been used primar-
ily for image registration. The approach estimates gradients stochastically on
the image representation, and then employs deterministic gradients of the ob-
jective of the SSD alignment function, resulting in an efficient quasi-Newton
alignment algorithm. Many variations upon this idea now exist in computer
vision literature [4, 5, 1] for applying deterministic gradient search to object
registration.

A good example of stochastic gradient-based search for object/image align-
ment can be found in the constrained mean-shift algorithm for deformable
part alignment (made popular for the task of facial landmark alignment [19]).
In this approach, stochastic gradients around the alignment objective are es-
timated independently for each part detector, from which a descent direction
is then found that adheres to the learned dependencies between those parts.
The focus in this chapter, however, will be solely on deterministic gradient-
based methods due to their clear computational advantages over stochastic
methods.

4 Linearizing Pixels and Sparse Features

As stated earlier, our central focus in this chapter is to first investigate how
well sparse features like HOG and SIFT linearize compared to pixel intensi-
ties. To do this we first need to review how one estimates the representation’s
gradient estimate∇R(x) : R2D → RD×2D when performing the linearization,

R(x + ∆x) ≈ R(x) +∇R(x)∆x (3)

where R(x) ∈ {I(x), Φ{I(x)}} is a representation function that is agnostic
to the choice of representation: raw pixel intensities I(x), or densely sampled
sparse features Φ{I(x)}.

Gradient Estimation as Regression

One can view the problem of gradient estimation naively as solving the fol-
lowing regression problem,

∇R(x) = arg min
J

∑
∆x∈P

η{R(x + ∆x)− J∆x} (4)
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where P is the set of deformations over which we want to establish an approx-
imately linear relationship between the representation R(x + ∆x) and the
deformation vector ∆x. η is the objective function used for performing the
regression, for example η{.} = ||.||22 would result in least-squares regression.
This gradient estimation step can be made more efficient by considering each
coordinate in x = [xT1 , . . . ,x

T
D]T to be independent of each other. This results

in a set of KD regression problems,

∇Rki (xi) = arg min
J

∑
δ∈L
{Rki (xi + δ)− Jδ}, ∀ i = 1 : D, k = 1 : K (5)

where ∇Rki (xi) : R2 → R1, L is the local translation deformation set for each
pixel coordinate (normally a small window of say 3× 3 or 5× 5 discrete pixel
coordinates), D is the number of pixel coordinates and K is the number of
channels in the representation (e.g. for raw pixel intensities K = 1). We can
then define ∇Ri(xi) : R2D → RDK×2D as,

∇R(x) =



∇R1
1(x1)
...

∇RK1 (x1)
. . .

∇R1
D(xD)
...

∇RKD (xD)


. (6)

Of course, linear regression is not the only option for learning the gradient
regressor. One could also consider using support vector regression (SVR) [9],
which has better robustness to outliers. Intuitively, support vector regression
predicts the gradient direction from a different weighted combination of pixels
within a local region around the reference pixel. SVR has a clear performance
advantage, with a commensurate increase in computation during training.

Gradients Estimation as Filtering

For a least-squares objective η{.} = ||.||22 the solution to each gradient matrix
function can be computed in closed form,

∇Rki (xi) =

(∑
δ∈L

δδT

)−1(∑
δ∈L

δ[Rki (xi)−Rki (xi + δ)]

)
. (7)

There are a number of interesting things to observe about this formulation.
The first term in the solution is independent of the representation – it depends
only on the local deformations sampled, and so can be inverted once rather
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than for each Rki . The second term is simply a sum of weighted differences
between a displaced pixel, and the reference pixel, i.e.,[∑

∆x

∑
∆y∆x(Rki (xi +∆x, yi +∆y)−Rki (x, y)∑

∆x

∑
∆y∆y(Rki (xi +∆x, yi +∆y)−Rki (x, y)

]
. (8)

If δ = [∆x,∆y]T is sampled on a regular grid at integer pixel locations, Eqn.
8 can be cast as two filters – one each for horizontal weights ∆x, and vertical
weights ∆y,

fx =

x−n . . . xn...
x−n . . . xn

 fy =

 y−n . . . y−n...
yn . . . yn

 (9)

Thus, an efficient realization of Eqn. 7 of the gradient at every pixel coordi-
nate is,

∇Rki (xi) =

(∑
δ∈L

δδT

)−1
diag

([fx ∗ Rki (x)
fy ∗ Rki (x)

])
(10)

where ∗ is the 2D convolution operator. This is equivalent to blurring the
image with a clipped quadratic and then taking the derivative. It is also pos-
sible to place weights on δ stemming from L as a function of its distance
from the origin. In the case of Gaussian weights this results in the classical
approach to estimating image gradients by blurring the representation with
a Gaussian and taking central differences. It is surprising that the two for-
mulations make opposing assumptions on the importance of pixels, and as
we show in our experiments section the clipped quadratic kernel induced by
linear regression is better for alignment.

Pixels versus Sparse Features

Considerable literature has been devoted to finding image features for general
object classes that are discriminative of image semantics whilst being tolerant
to local image contrast and geometric variation. The majority of existing
feature transforms encode three components: (i) non-linear combinations of
pixels in local support regions, (ii) multi-channel outputs, and (iii) sparsity.
Prominent image features that exhibit these properties include HOG [7] and
densely sampled SIFT descriptors [14]. We refer to this class of transforms
as densely sampled sparse features.

Natural images are known to stem from a 1
f frequency spectrum [20]. This

means that most of the energy in the image is concentrated in the lower
frequencies – the image function is naturally smooth. Sparse multi-channel
features follow no such statistics. In fact, they often exhibit highly non-linear
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properties: small changes in the input can sometimes produce large changes
in the output (e.g . gradient orientations close to a quantization boundary in
HOG/SIFT can cause the output feature to jump channels, pixel differences
close to zero in binary features can cause the output feature to swap signs),
and other times produce no change in the output (e.g . orientations in the
center of a bin, pixel differences far from zero).

To evaluate the generative capacity of different representations (i.e. how
well the tangent approximation predicts the true image function at increasing
displacements) we performed a simple experiment. We evaluated the signal-
to-noise (SNR) ratio of the linearization function ∇R(x) for increasing dis-
placements across a number of images,

SNR(x) = 10 log10

(
||R(x + ∆x)||

||R(x) +∇R(x)∆x−R(x + ∆x)||

)2

. (11)
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Fig. 1 An experiment to illustrate the generative ability of pixel and densely sam-

pled sparse features (in this case dense SIFT). We compute the linearization error
R(x) +∇R(x)∆x−R(x + ∆x) for a range of ∆x (x-axis), and look at the resulting

signal-to-noise ratio (SNR) on the y-axis. The results are averaged over 10000 random

trials across 100 images drawn from a set of (a) faces, and (b) animals. As expected, the
generative accuracy of pixels is consistently higher than densely sampled sparse features,

and better for face imagery than animal+background imagery (though the sparse repre-

sentation is largely unchanged).

For simplicity, we restricted the deformation vectors ∆x to global trans-
lation. Fig. 1 illustrates the signal-to-noise ratio (SNR) versus Euclidean dis-
tance (i.e. ||∆x||2) for images of (a) faces, and (b) animals.

The tangent to the pixel image is a consistently better predictor of im-
age appearance than the same applied to sparse features (in this case, dense
SIFT). This confirms the intuition that pixel images are smoothly varying,
whereas non-linear multi-channel features are not. The experiment of Fig.
1 indirectly suggests sparse features would not be appropriate for gradient-
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based alignment search strategies. Unsurprisingly, graph-based optimization
have become the strategy of choice for alignment when using sparse features,
with some notable exceptions [16, 23, 25]. As a result, the wealth of research
into continuous alignment methods [5, 12, 15, 18, 28] has largely been over-
looked by the broader vision community.

5 Experiments

So far we have talked in generalities about gradient-based alignment meth-
ods, and the properties they enjoy. In this section, we instantiate a particular
model of gradient-based alignment based on the Lucas & Kanade (LK) algo-
rithm [15] in order to illustrate these properties in a number of synthesized
and real-world settings.

We perform two tasks: (i) pairwise image alignment from a template im-
age to a query image, and (ii) ensemble alignment where the alignment error
of a group of images stemming from the same object class is minimized. In
both tasks, existing gradient-based alignment approaches have typically only
used pixel intensities, and as a result have only been evaluated on constrained
domains such as faces, handwritten digits and building façades. Understand-
ably, this has failed to capture the attention of the broader vision community
working on challenging object classes with high intra-class variation.

We seek to show that gradient-based methods can be applied to object
categories for which densely sampled sparse features are requisite to attaining
meaningful similarities between images, and that a vanilla implementation
of LK can go a long way to achieving interesting results on a number of
challenging tasks.

The Lucas & Kanade Algorithm

Recollect our formulation of the alignment problem in Eqn. 1, this time using
the representation function R that is agnostic to the choice of image function,

∆x∗ = arg min
∆x
D{R(x +∆x)}+A{∆x}. (12)

A common substitution within the LK algorithm is,

p∗ = arg min
p
||R(p)− T (0)||22 (13)

where p is a set of warp parameters that model the deformation vector ∆x
by proxy of a warp function,
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R(p) =

 R{W(x1;p)}
...

R{W(xD;p)}

 (14)

and W(x;p) : R2D → RP . The warp function conditions the deformation
vector on the warp parameters such that x + ∆x = W(x;p). In most in-
stances the dimensionality of p ∈ RP is substantially less than the canonical
deformation vector ∆x ∈ R2D (e.g. for a 2D affine warp P = 6). This is
equivalent to setting A to be an indicator function, which has zero cost when
the parameters fall within the feasible set of warps, and infinity otherwise.
As in Eqn. 3, the LK algorithm takes successive first-order Taylor expansions
about the current estimate of the warp parameters, and solves for the local
update,

∆p∗ = arg min
∆p
||R(p) +∇R(p)

∂W
∂p

∆p− T (0)||22 (15)

where ∇R(p) is the gradient estimator, and ∂W
∂p is the Jacobian of the warp

function which can be found deterministically or learned offline. Here we
have presented the LK algorithm using the canonical L2 loss function and
the linearization function estimated from the input image representationR as
opposed to the template T . In reality there are a slew of possible variations on
this classical LK form. [2] and [3] provide a thorough reference for choosing an
appropriate update strategy and loss function. We present LK in this manner
to avoid introducing unnecessary and distracting detail for the unfamiliar
reader.1 Regardless of these details, the choice of image representation and
method of gradient calculation remain integral to the performance observed.

Pairwise Image Alignment

Earlier in Fig. 1 we performed a synthetic experiment showing the lineariza-
tion error as a function of displacement for different image representations.
Here we perform the sequel to that experiment, showing the frequency of
convergence of the LK algorithm as a function of initial misalignment.

We initialize a bounding box template within an image, then perturb its
location by a given RMS point error (measured from the vertices of the
bounding box) and measure the frequency with which the perturbed patch
converges back to the initialization after running LK. The results are show in

1 In our experiments we actually estimate our linearization function from the template

image T (0) → ∇T (0) using a technique commonly known within LK literature as the

inverse compositional approach. This was done due to the substantial computational ben-
efit enjoyed by the inverse compositional approach, since one can estimate T (0)→ ∇T (0)

once, as opposed to the classical approach of estimating R(p)→ ∇R(p) at each iteration.

See [2] and [3] for more details.



In Defense of Gradient-Based Alignment 11

Fig. 2. We perform two variants of the experiment, (a) intra-image alignment,
where the template and perturbation are sampled from the same image, and
(b) inter -image alignment, where the perturbation is sampled from a different
image of the same object class, with known ground-truth alignment. The task
of inter-image alignment is markedly more difficult, since the objects within
the template and the perturbation may have different non-rigid geometry,
scene lighting and background clutter.

Even in the intra-image scenario, dense SIFT consistently converges more
frequently than pixel intensities. In the inter-image scenario, the difference
is even more pronounced. Fig. 3 shows a more comprehensive view of the
inter-image scenario, with a comparison of the different gradient estimation
techniques we have discussed. In general, there is a gradual degradation in
performance from support vector regression (SVR) to least squares regression
to central differences. The domain in the legend specifies the blur kernel size
in the case of central differences, or the support region over which training
examples are gathered for regression. Fig. 4 illustrates the type of imagery on
which we evaluated the different methods – animal classes drawn from the
ImageNet dataset, often exhibiting large variations in pose, rotation, scale
and translation.
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Fig. 2 An experiment to illustrate the alignment performance of pixel intensities versus
densely sampled sparse features (in this case densely extracted SIFT descriptors). In both

scenarios, we initialize a bounding box within an image, then perturb its location by a given

RMS point error (x-axis) and measure the frequency with which the perturbed patch
converges back to the initialization (y-axis). In (a) we perform intra-image alignment,

where the template and perturbation are sampled from the same image. In (b) we perform
inter -image alignment, where the perturbation is sampled from a different image of the
same object class with known ground-truth alignment. The task of inter-image alignment is

markedly more difficult, since the two objects being aligned may be experiencing different

lightning and pose conditions. The drop in pixel performance is more pronounced than
dense SIFT when moving to the harder task.
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Fig. 3 Inter -image alignment performance. We initialize a bounding box within the im-
age, then perturb its location by a given RMS point error (x axis), run Lucas Kanade on

the resulting patch, and measure the frequency with which the patch converges back to the

initialization (y axis). The domain specifies the Gaussian standard deviation in the case of
central differences, or the maximum displacement from which training examples are gath-

ered for regression. On dense SIFT, there is a progressive degradation in performance from
SVR to least-squares regression to central differences. Pixel intensities (using any gradient
representation) perform significantly worse than the top dense SIFT based approaches.
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(a) (b)

Fig. 4 Representative pairwise alignments. (a) is the template region of interest, and (b) is
the predicted region that best aligns the image to the template. The exemplars shown here

all used dense SIFT features and least squares regression to learn the descent directions.

The four examples exhibit robustness to changes in pose, rotation, scale and translation,
respectively.
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Ensemble Alignment

We finish the piece with the challenging real-world application of ensemble
alignment. The task of ensemble alignment is to discover the appearance of
an object of interest in a corpus of images in an unsupervised manner. Dis-
crete approaches are typically unsuitable to this problem because searching
over translation and scale alone is insufficient for good alignment, and ex-
ploring higher-dimensional warps using discrete methods is either infeasible
or computationally challenging.

We present results using a gradient-based approach called least squares
congealing [6]. The details of the algorithm are not essential to our discussion,
however it features the same linearization as the LK algorithm, and as such
is subject to the same properties we have discussed throughout this chapter.

Fig. 5 show the results of aligning a subset of 170 elephants drawn from the
ImageNet dataset,2 using dense SIFT features and least squares regression,
parametrized on a similarity warp. The same set-up using pixel intensities
failed to produce any meaningful alignment. Fig. 6 shows the mean of the
image stack before and after congealing. Even though individual elephants
appear in different poses, the aligned mean clearly elicits an elephant silhou-
ette.

6 Discussion

So far in this chapter we have presented the somewhat paradoxical result
that densely sampled sparse features perform well in real-world alignment
applications (Fig. 2, Fig. 3) whilst sporting poor tangent approximations
(Fig. 1). Here we try to offer some insight into why this might be the case.

Consider first the effect of convolving a sparse signal with a low-pass fil-
ter. We know from compressive-sensing that observed blurred signals can be
recovered almost exactly if the underlying signal is sparse [21]. Unlike tradi-
tional dense pixel representations whose high-frequency information is atten-
uated when convolved with a low-pass filter, sparse signals can be blurred to
a much larger extent without any information loss before reaching the limits
of sampling theory. Fig. 7 illustrates the effect of comparing dense and sparse
signals as the degree of misalignment and blur increases.

The immediate implication of this for image alignment is that a sparse
multi-channel representation can be blurred to dilate the convergent region
whilst preserving information content. The encoding of local pixel interactions
ensures this information content contains high-frequency detail required for
good alignment.

2 We removed those elephants whose out-of-plane rotation from the mean image could not

be reasonably captured by an affine warp. The requirement of a single basis is a known

limitation of the congealing algorithm.



In Defense of Gradient-Based Alignment 15

Fig. 5 Unsupervised ensemble alignment (congealing) on a set of 170 elephants taken
from ImageNet. The objective is to jointly minimize the appearance difference between all

of the images in a least-squares sense – no prior appearance or geometric information is
used. The first 6 rows present exemplar images from the set that converged. The final row
presents a number of failure cases.
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(a) (b)

Fig. 6 The mean image of Fig. 5 (a) before alignment, and (b) after alignment with
respect to a similarity warp. Although individual elephants undergo different non-rigid

deformations, one can make out an elephant silhouette in the aligned mean.

(a) (b)

Fig. 7 A 1D alignment thought experiment. The first row shows two signals: a dense
signal with a 1

f
frequency spectrum, and a sparse positive signal. The second, third and

fourth rows show the negative auto-correlation of the signals to simulate the expected

loss for varying degrees of misalignment (x-axis) with increasing amounts of Gaussian
blur applied to the original signals (row-wise). The red circles represent a hypothetical

initialization of the parameters (in this case x-translation), the green squares represent

the global optima, and the arrows indicate the direction of steepest descent. For the given
initialization, gradient-based alignment on the dense signal will never converge to the

true optima. Even with a large amount of blur applied, the solution is divergent (the
gradient of the cross-correlation is moving away from the optima). The sparse signal, on

the other hand, can tolerate a larger amount of blur and still maintain the location of the

optima, in this case converging with the greatest amount of blur applied. This illustrates
the importance of sparse, positive representations when matching misaligned signals. In

order to retain discriminative appearance information, modern features use multi-channel,
sparse, positive representations – but the basic concept remains.
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7 Conclusion

Image alignment is a fundamental problem for many computer vision tasks.
In general, there are two approaches to solving for the optimal displacement
parameters: (1) to iteratively linearize the image function and take gradient
steps over the parameters directly, or (2) to exploit redundancies in the set of
allowable deformations and enumerate the set using graphical models. While
a large body of research has focussed on gradient-based alignment strategies
in the facial domain, they have rarely been applied to broader object cate-
gories. For general objects, alignment in pixel space performs poorly because
low frequency information in the signal is dominated by lighting variation.
Densely sampled sparse features provide tolerance to local image contrast
variation, at the expense of reducing the range over which tangent approx-
imations to the image function are accurate. As a result, graphical models
have become the preferred approach to alignment when using densely sam-
pled sparse features.

We motivated this chapter with the surprising result that although the
tangent approximation is poor, the real-world results when using image fea-
tures are impressive. We offered some insights into why this may be the case,
along with a number of approaches for estimating the descent directions.
We ended the piece with an unsupervised ensemble alignment experiment to
illustrate how gradient-based methods can operate on challenging imagery
with high-dimensional warp functions.

In summary, we showed that the application of gradient-based methods
to general object alignment problems is possible when using densely sampled
sparse features, and their capacity to handle complex warp/regularization
schemes may facilitate some interesting new approaches to existing challenges
in image and object alignment.
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