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Abstract. Image representations derived from simplified models of the
primary visual cortex (V1), such as HOG and SIFT, elicit good perfor-
mance in a myriad of visual classification tasks including object recogni-
tion/detection, pedestrian detection and facial expression classification.
A central question in the vision, learning and neuroscience communi-
ties regards why these architectures perform so well. In this paper, we
o↵er a unique perspective to this question by subsuming the role of V1-
inspired features directly within a linear support vector machine (SVM).
We demonstrate that a specific class of such features in conjunction with
a linear SVM can be reinterpreted as inducing a weighted margin on the
Kronecker basis expansion of an image. This new viewpoint on the role
of V1-inspired features allows us to answer fundamental questions on
the uniqueness and redundancies of these features, and o↵er substantial
improvements in terms of computational and storage e�ciency.

1 Introduction

One of the fundamental unanswered questions in computer vision regards how
to best represent object appearance in the face of geometric and photometric
distortions. The computational neuroscience community faces a parallel chal-
lenge, trying to understand how the human visual system attains a high degree
of invariance whilst maintaining high selectivity. Our understanding of invariant
representations stems largely from the works on the mammalian primary visual
cortex (V1) [7]. Here, local object appearance and shape can be well categorised
by the distribution of local edge directions, without precise knowledge of their
spatial location. This is the premise behind HOG [4] and SIFT [12], among other
features inspired by V1.

Jarrett et al . [8] showed that many V1-inspired features follow a similar
pipeline of filtering an image through a large filter bank, followed by a non-
linear rectification step, and finally a blurring/histogramming step.3 Canonical
features such as HOG and SIFT employ filter banks with strong selectivity to
spatial frequency, orientation and scale (e.g . oriented edge filters, Gabor filters,

3 We ignore photometric normalisation for brevity, but owing to its importance in the
e�cacy of the descriptor [8], we show how to reintroduce it later.
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etc.). More recently however, weakly selective architectures such as random fil-
ters in convolutional networks have shown good performance in object classifica-
tion tasks [15]. This brings into question the purpose of filters and the intrinsic
properties of invariant representations in visual recognition.

From a practical perspective, most V1-inspired features use an over-complete
representation based on filtered versions of images, incurring a storage cost linear
in the number of filters. Whilst this seems reasonable at a glance, consider a
simple example of storing 200000 50 ⇥ 50 images in double precision. In the
case of raw pixels this amounts to only 3.72 GB of storage, a manageable figure
on current desktop hardware. Filtering these images with 40 Gabor filters (5
scales and 8 orientations), commonly used in facial expression recognition [9],
storage blows out to an untenable 149 GB. Strategies have been proposed to curb
storage complexity, however they are largely based on heuristic subsampling or
data dependent matrix factorisations that do not generalise well to new problems
or datasets.

The role of V1-inspired features has been studied largely in isolation to the
learning architecture used for classification. One criticism of ignoring the learning
strategy when studying features is that structure unimportant to the classifier
may be preserved, resulting in (i) additional computational burden, and (ii)
ambiguity in representation. A fundamental motivation of our work is to consider
these entities as intimately coupled. Analysing them as a whole yields insights
that would not otherwise be apparent.

Contributions: We make three specific contributions in this paper:

– We show that a particular class of V1-inspired features can be rewritten
as a linear function of the Kronecker expansion of an image (§2). This lin-
ear transform can be viewed as a data-independent matrix which induces a
weighted margin in max-margin learning (§4).

– We postulate that a lower dimensional matrix should be able to approximate
the same prior but at a substantially lower computational cost (§3), and
empirically show that this is indeed the case (§5). This reduces both the
storage complexity of the data and the time taken to train the resulting
SVM, in theory enabling training on significantly larger datasets with little
loss in classification performance.

– We demonstrate that reinterpreting the role of V1-inspired features as a
weighted margin reveals some valuable insights into: (i) the uniqueness of
the filters commonly used in these architectures, and (ii) the capacity of a
linear SVM using V1-inspired features tending towards a quadratic kernel
SVM (§4).

Empirical results are detailed in §5 across a number of visual classification tasks.
Matlab code is available at hiltonbristow.com/software.

Prior Art: Ashraf et al . [1] originally explored the link between feature extrac-
tion and a weighted margin for visual classification tasks. By restricting their
scope to linear features, they view filtering as a weighted margin on the data
in the Fourier domain. We instead explore an inherently nonlinear embedding,

http://hiltonbristow.com/software
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more akin to current models of early biological vision. Due to the high dimen-
sionality of the resulting problem (not encountered by Ashraf et al . by virtue of
the convolution theorem), we seek to explicitly represent the feature maps in a
lower dimensional space.

Vedaldi and Zisserman [17] and Bo et al . [3] both propose methods for ex-
plicitly representing kernels so lower dimensional approximations can be found,
independent of data. The appeal of both approaches is the speedup in training
and evaluation time that can be enjoyed by learning a linear rather than kernel
SVM. Vedaldi considers the case of approximately representing the implicit fea-
ture associated with additive kernels (i.e. kernels useful for matching histograms)
whilst Bo considers the case of incorporating preprocessed oriented edge ener-
gies, along with spatial position and colour directly into the kernel function.
Our method, by contrast, relates the raw image pixel intensities directly with
the feature pipeline. By having this direct relationship we can gain fundamen-
tal insights into the importance of particular architectures and redundancies in
V1-inspired features to actual classification performance within a linear SVM.

2 Problem Formulation

Feature representations such as HOG and SIFT, and other more exotic archi-
tectures such as convolutional networks, crudely approximate the function of V1
complex cells. They commonly involve (1) edge orientation detection, (2) non-
linear rectification to increase edge bandwidth and discard edge step direction,
(3) contrast normalisation to remove photometric variation, and (4) downsam-
pling/pooling to histogram the resulting edge directions. We show now that a
specific form of this pipeline can be expressed through a mixture of Kronecker
products and convolution operations.

V1 Form: Given a vectorised input image of intensities x 2 RD, coarse edge
orientation detection can be cast as a 2D convolution operation with a bank of
oriented filters, {gf}

F
f=1. A simple pointwise quadratic function, cast here as the

Hadamard product (�) between two filtered versions of an image fulfils both
the rectification and nonlinearity steps. Spatial pooling is achieved through 2D
convolution (⇤) of the rectified response with a boxcar filter b. The feature map
�(x) can thus be expressed as,

�(x) = [�1(x),�2(x), . . . ,�F (x)]
T (1)

where,
�f (x) = b ⇤ [(gf ⇤ x)� (gf ⇤ x)] . (2)

This particular architecture has taken the name “convolutional square pooling”
and has shown good performance across a range of tasks [2]. Many variations
on this feature pipeline have been advocated in literature previously, such as
the use of max rather than average pooling, a sigmoid nonlinear function af-
ter rectification, and the estimation of orientation energies using an arctangent
function on the horizontal and vertical edge energies. Motivations for the specific
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form used in this paper are that it: (i) is similar in philosophy to these other
variants, (ii) still o↵ers excellent performance when applied to a variety of clas-
sification tasks, and (iii) has greater flexibility in manipulation, thus leading to
our re-interpretation as a weighted margin within a linear SVM.

Kronecker Form: Manipulation of the form in Equation 2 is limiting due to
the Hadamard product (�). By defining a relation between the Hadamard and
Kronecker product (⌦) however, we can exploit some properties of the latter.

Theorem 21 The Hadamard product between any two equal size vectors xi 2

RD and xj 2 RD can be written as,

xi � xj = M(xi ⌦ xj) (3)

such that M 2 RD⇥D2
. We can explictly define M as,

M =

2

64
e

T
1 ⌦ e

T
1

...
e

T
D ⌦ e

T
D

3

75 (4)

given that ei 2 RD is a vector of zeros with 1 at the i-th element.
Replacing 2D convolution operations (e.g . g ⇤ x) with convolution matrices

(e.g . Gx) and applying Theorem 21 to Equation 2, the response to a single filter
can be written as,

�f (x) = BM[(Gfx)⌦ (Gfx)]

= BM(Gf ⌦Gf )(x⌦ x) . (5)

The full response to a bank of filters can be written as,

�(x) = L(x⌦ x) (6)

where,

L =

2

64
BM(G1 ⌦G1)

...
BM(GF ⌦GF )

3

75 . (7)

For two V1-inspired feature maps �(xi) and �(xj), the kernel is defined as
the inner product of the maps,

K(xi,xj) = h�(xi),�(xj)i . (8)

Since the feature maps have a closed form expression, the kernel can be written
explicitly as,

�(xi)
T�(xj) = (xi ⌦ xi)

T
L

T
L(xj ⌦ xj) (9)

= (xi ⌦ xi)
T
S(xj ⌦ xj) (10)

where L 2 RDF⇥D2
implies that the rank of S is at most DF . Thus after some

manipulation, the form of V1-inspired features can be rearranged with the filter
and data terms isolated. This suggests that the feature map is only dependent
on the joint response from the filters and blur kernels, and that the weighting
matrix S can be completely precomputed in the absence of data.
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3 Computational E�ciency

Whilst S is rank deficient, its high dimensionality (i.e. D2
⇥D2) makes it infeasi-

ble to work with directly. In practice, we wish to find a matrix of rank K ⌧ DF
that makes a good approximation to S whilst never explicitly computing S or
its eigenvectors.

Indirectly Computing the Eigenvectors: From the thin singular value de-
composition (SVD) of L,

L = U⌃V

T (11)

the right singular vectors V 2 RDF⇥D2
correspond to the eigenvectors of LT

L =
S 2 RD2⇥D2

, and the left singular vectors U 2 RDF⇥DF to the eigenvectors of
LL

T which we denote S

⇤
2 RDF⇥DF . The eigenvectors V of S can be found

e�ciently by first computing the eigenvectors U of S⇤, then from Equation 11,

V

T = (⌃T
U

T
U⌃)�1(U⌃)TL (12)

= ⌃�1
U

T
L . (13)

Letting Û, ⌃̂, V̂ be components of the SVD of L with the K largest magnitude
singular values preserved, and �̂(.) the corresponding low dimensional feature
map, then

S ⇡ V̂⌃̂
2
V̂

T . (14)

The distribution of singular values in S

⇤ suggests how well a rank reduction
will preserve the information in S. Figure 1 shows the eigenspectra of typical
S matrices constructed from a number of filter representations. The spectra
hint at the significant redundancies that can be exploited to reduce storage
and computational costs associated with computing the low rank feature map.
The ⇠

1
f slope of the spectra correlates well with statistics observed in natural

images.

Applying the Eigenvectors: An explicit representation of S is unnecessary
since the goal is to find an e�cient closed-form expression for the feature maps.
Thus,

�(xi)
T�(xj) ⇡ (xi ⌦ xi)

T
V̂⌃̂

2
V̂

T (xj ⌦ xj) (15)

and since the kernel is separable, a single feature map in isolation becomes,

�̂(xi) = ⌃̂V̂

T (xi ⌦ xi) . (16)

Substituting Equation 13 into Equation 16 gives,

�̂(xi) = Û

T
L(xi ⌦ xi) . (17)

Whilst L is sparse for compact support filters, storage in memory quickly be-
comes prohibitive with increasing image size. For our earlier example of a 50⇥50
pixel input and 40 filters with 20⇥20 pixel support, storing the full L matrix will
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Fig. 1. The eigenspectrum of S for a number of filter representations. The ⇠ 1
f distri-

bution suggests a low rank approximation could be found, which preserves most of the
variance in S. The magnified region shows in greater detail the energy distribution of
the largest eigenvalues. The learned filters (using the method of [10]) have the most
compact energy spectrum, followed by the Gabor filters, with the random filters having
the broadest spectrum.

require on the order of 657 GB.We know however, that the joint portion L(x⌦ x)
can be e�ciently computed using the original method of convolutions via,

L(x⌦ x) =

2

64
b ⇤ [(g1 ⇤ x)� (g1 ⇤ x)]

...
b ⇤ [(gF ⇤ x)� (gF ⇤ x)]

3

75 . (18)

By taking this approach, only ⌃̂ and Û ever need be explicitly computed. For
the example above, storing Û of rank K = D will consume only 1.86 GB of
memory.

Computing the feature map of Equation 1 incurs a cost of O(DF logD) oper-
ations and storage O(DF ). Computing the proposed feature map of Equation 17
incurs an added O(KDF ) operations but storage is only O(K) where K ⌧ DF .
Our feature map therefore realises a tradeo↵ between computational complexity
and storage complexity, and results in a representation that is manageable for
large amounts of high dimensional data, and as shown following, tractable in
time when learning an SVM.

4 V1-Inspired Features & SVMs

Support vector machines have seen extensive use in visual classification tasks,
and have proved particularly successful in tasks involving V1-inspired features [4].
Linear SVMs have a number of inherent advantages over kernel SVMs: (i) faster
learning times, (ii) the ability to learn from larger datasets, (iii) low computation
cost during evaluation as the summation over support weights and vectors can
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be pre-computed, and most importantly, (iv) for some applications identical if
not superior performance to nonlinear kernels (e.g ., RBF, polynomial, tanh) [5].

Given a set of training features and labels {�(x), yi}li=1, �(x) 2 RDF , yi 2
{+1,�1} a linear SVM attempts to find the solution to the following optimisa-
tion problem,

min
w,⇠i�0

1

2
w

T
w + C

lX

i=1

⇠i (19)

subject to yiw
T�(xi) > 1� ⇠i, i = 1 . . . l

where C is a penalty parameter and ⇠i are the slack variables introduced to o↵set
the e↵ects of outliers in the final solution.4

It is well understood in SVM literature that the w

T
w term in Equation 19

is inversely proportional to the margin of the solution. Maximising this margin
is central to the generalisation properties of SVMs. The type of margin being
maximised in this feature space is based on an unweighted (i.e. Euclidean) dis-
tance. Inspired by [1], however, we can demonstrate that an equivalent form of
Equation 19 can be obtained by solving,

min
v,⇠i�0

1

2
v

T
S

�1
v + C

lX

i=1

⇠i (20)

subject to yiv
T (xi ⌦ xi) > 1� ⇠i, i = 1 . . . l

where the role of features has been completely subsumed into the weighted mar-
gin term v

T
S

�1
v. The solutions to Equation 19 (w 2 RDF ) and 20 (v 2 RD2

)

are related by w = Lv where L 2 RDF⇥D2
is previously defined in Equation 10.

A key realisation here is that the role of the features is completely described as
a margin manipulation – the weighting term is only applied to the margin term
and not the data term.

Capacity of the Classifier: This result links well with previous work of Shiv-
aswamy and Jebara [16] concerning what “type” of margin should be maximised
during the estimation of a max margin classifier such as an SVM. In this work
Shivaswamy and Jebara discussed the importance of selecting the “correct” kind
of margin when learning an SVM and how maximising a margin based on Eu-
clidean distance might not always be the best choice in terms of classifier gen-
eralisation. In fact when one sets S = I then the solution to the objective in
Equation 20 reverts to a classical kernel SVM since,

(xi ⌦ xi)
T
I(xj ⌦ xj) = (xT

i xj)
2 (21)

where the kernel employed is a homogeneous second-order polynomial. Under-
standing how V1-inspired features improve the capacity of a linear SVM will

4 The bias b is accounted for in w  [wT , b] by �(x)  [�(x)T , 1]T but is omitted
here for clarity.
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become important in our experiments section (§5). It is more reasonable to com-
pare the classification performance of V1-inspired features to a quadratic kernel
than to (a linear kernel on) raw pixels, since the latter has substantially less
capacity.

Complexity in SVM Training and Prediction: When training an SVM
classifier, we modify Equation 19 to instead use our low dimensional feature
map �̂(x), which yields an optimisation over a lower (K) dimensional ŵ,

min
ŵ,⇠i�0

1

2
ŵ

T
ŵ + C

lX

i=1

⇠i (22)

subject to yiŵ
T �̂(xi) > 1� ⇠i, i = 1 . . . l .

Further to the space-time tradeo↵s of §3, our method also realises a preprocessing-
learning tradeo↵, which has benefits when training large datasets and enumerat-
ing over di↵erent training schemes. We do not, however, have to make that same
tradeo↵ during prediction. By taking advantage of the form of �̂(x) from Equa-
tion 13, we can promote ŵ from a K dimensional space to a DF dimensional
space through w = Uŵ, such that for a vectorised test image xi,

w

T�(xi) ⌘ ŵ

T �̂(xi) (23)

where �(x) is the original feature map of Equation 1.

Uniqueness of Filters: The structured form of the S matrix gives us an insight
into the role of filters in the margin manipulation, specifically the uniqueness of
the filter responses and their joint contribution to the invariant representation.
The matrix S = LL

T can be represented as a concatenation of F ⇥ F sub-
matrices,

LiL
T
j = BM(Gi ⌦Gi)(Gj ⌦Gj)

T
M

T
B

T

= BM(GiG
T
j )⌦ (GiG

T
j )M

T
B

T . (24)

From this form one can see that the role of the individual filters in this form
is not unique since GiAA

�1
G

T
j = GiG

T
j where A is any arbitrary full rank

transform matrix. Further, it is possible to show that the interaction of these
filters GiG

T
j is unique up to a sign ambiguity.5 Finally, it is possible to see

where spatial invariance stems from in the weighting matrix S since for i = j
local phase is lost, and when i 6= j only relative phase is preserved.

5 Experiments

Here we evaluate our methodology on MNIST, Caltech 101 and Cohn Kanade+
datasets to illustrate the applicability of our method to a range of computer

5 Since x⌦x = vec(xxT ) where we know through the SVD that one can recover x up
to a sign. Here we assume x = vec(GiG

T
j ) from Equation 24.
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vision domains. Since we have already motivated the scalability of our method
to large datasets through our initial thought experiment, we instead focus on
showing our rank reduced features remain competitive on established bench-
marks. We mimic the experimental setup of other authors who have used similar
V1-inspired features.

For each of the experiments we consider 5 cases: (i) rank DF S matrix,
(ii) rank D S matrix, (iii) random filters rather than frequency and orientation
selective filters, (iv) S ! I corresponding to a quadratic kernel on the pixels,
and (v) pixels. Where we say rank(S) = D, we take D to be the dimensionality
of the vectorised input image. In the case of frequency and orientation selective
filters, we use a bank of log Gabor filters. In the case of random filters, we use
the same number of filters as the Gabor case, and ensure that each filter has
zero mean and unit norm. For each convolution, we only keep the central area
that is the same size as the input image.

Reintroducing Photometric Normalisation: Jarrett et al . [8] show that
rectification and photometric normalisation are the single most important factors
in improving the performance of a recognition system. We too note this to be
the case, especially in images exhibiting large photometric variation, as observed
in natural images (e.g . Caltech 101).

Given a pointwise processing stage  (.) that maps RDF
! RDF Equa-

tion 17 can be extended to

�(x) = U

T 
�
L(x⌦ x)

�
. (25)

This allows us to include mid-processing such as photometric normalisation with-
out loss of generality.

MNIST: MNIST is a handwritten character recognition dataset containing
60000 training examples and 10000 test examples of the characters 0� 9. Each
character is roughly centred in a 28⇥28 window and quantised to 8-bit grayscale.
Although MNIST is an ageing dataset, LeCun’s convolutional network architec-
ture – which for a single layer closely follows our parametric form – has shown
particularly impressive performance at the task [8].

We use 48 Gabor filters at 12 orientations and 4 frequencies each of size
28 ⇥ 28, and a boxcar filter of size 3 ⇥ 3. We remove the photometric normali-
sation step from our model, but preprocess each image by power normalisation.
Due to the large number of training data and the resulting descriptor dimension-
ality of 37632, we opt to train the resulting linear SVM in the prime. Average
classification performance is shown in Figure 2(a).

Caltech101: Caltech 101 is a “natural” object recognition dataset containing
101 object classes, each with 40�800 instances. The objects are roughly centred
and in similar poses, though vary in appearance. Pinto has pointed to a number
of flaws in the dataset and argues that it lacks true real-world variability, and
supports his claims by achieving good performance with a simple biologically
motivated feature representation [14]. We mimic his setup and achieve similar
performance whilst illustrating some advantages of our method.
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Fig. 2. Average classification performance across all classes of the (a) MNIST, and
(b) Caltech 101 dataset for di↵erent feature descriptor representations. (Pixels) raw
pixels, (Quadratic) quadratic kernel on raw pixels, (Rank DF Random) the full S

matrix constructed from random filters, (Rank D Gabor) a low rank approximation to
the full S matrix constructed from Gabor filters, (Rank DF Gabor) the full S matrix
constructed from Gabor filters, (State of Art) State of the Art benchmark for MNIST
taken from a survey of 60 algorithms, (Pinto) the reference method of Pinto [14].

We use 92 Gabor filters at 16 orientations and 6 scales each of size 43⇥ 43,
and a boxcar filter of size 17 ⇥ 17. We preprocess the images by resizing and
cropping each to fit a 150 ⇥ 150 pixel box. We modify our model to include a
downsampling matrix which subsamples each filter response by a factor of 5 (to
a 30⇥ 30 image). Average classification performance is shown in Figure 2(b).

PCA on Responses: To deal with the “curse of dimensionality”, many papers
have been devoted to finding low dimensional approximations to descriptors
using PCA, LDA or nonlinear dimensionality reduction methods [11,18,6]. These
methods have two inherent problems: the reduction is data dependent and needs
to be recomputed for each new set of data, and the reduction must occur in the
original dimensionality and may not be feasible in time or space.
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Fig. 3. A comparison of dimensionality reduction techniques on the Caltech 101
dataset. Performance is measured as average classification accuracy across classes as a
function of descriptor dimensionality. (PCA Matched 100%) PCA loadings calculated
from the entire training set. (Our Method) Dimensionality reduction using a low rank
approximation to S. (PCA Matched 10%) PCA loadings calculated from 10% of the
training set, with equal class representation. (PCA Mismatched) PCA loadings calcu-
lated from Cohn Kanade+ dataset. The green curve shows the variance of S preserved
as a function of the rank. A descriptor of rank D not only models 80% of the variance
in the original DF representation, but achieves similar classification performance. PCA
consistently performs ⇠ 4% better, but only in well-matched conditions.

Equation 17 suggests that the matrix U acts to transform the feature onto
a low rank orthonormal basis which preserves the highest modes of variance -
in essence PCA. The advantages of this approach are twofold: the reduction can
be precomputed in the absence of data and the reduction is based on the filter
components that are likely to be discriminative rather than the observed modes
of deformation specific to each training set. Figure 3 shows the classification
performance of our method as a function of feature length, using the Caltech 101
setup with Gabor filters. A number of PCA schemas are shown for comparison.
PCA Matched (10%) and PCA Mismatched show how PCA fails to generalise
when the data used to calculate the loadings either does not span the full extent
of geometric variability in the training and testing sets, or is from a di↵erent
domain entirely. Our method su↵ers neither of these drawbacks, yet approaches
the performance of PCA with loadings calculated from the full training set (PCA
Matched (100%)).

Cohn Kanade+: Cohn Kanade+ is an expression recognition dataset consisting
of 68-point landmark, broad expression and FACS labels across 123 subjects
and 593 sequences. Each sequence varies in length and captures the neutral
expression in the first frame and the peak formation of facial expression in the
last. We follow the experimental setup of Lucey et al . [13], however we consider
only the broad expressions and discard the AU labels.
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Fig. 4. Classification performance on Cohn Kanade+ broad expressions as a function
of increasing registration error. Feature representations have better robustness to reg-
istration error. The central magnified panel shows that with perfect registration, the
rank DF representations converge to a quadratic kernel and the rank D representations
converge to (a linear kernel on) raw pixels. A quadratic kernel represents the inherent
capacity of our V1-like feature parameterisation in a linear SVM learning scheme.

We register each face to a canonical geometric template then measure classifi-
cation accuracy across all expressions with increasing registration error. Results
are shown in Figure 4.

6 Discussion

The application of V1-inspired features can be reinterpreted as a weighted mar-
gin on the on the Kronecker basis expansion of an image. This insight becomes
clearer in Equation 20 when viewed in the context of training a linear SVM. The
prior on the margin is a global spatial weighting on the responses to oriented
edge filters, which appear to encode some phase invariance along with relation-
ships between frequency and orientation bands. The Cohn Kanade+ dataset was
used to explore the weighted margin insight under known ground-truth geomet-
ric distortions. The results of Figure 4 reveal a pervasive insight. Image features
give better robustness to registration error than raw pixel representations. With
perfect registration however, the performance of rank DF representations con-
verge to a quadratic kernel on the raw pixels, whilst the performance of the rank
D representations converge to (a linear kernel on) raw pixels.

This suggests that in the absence of geometric noise, the filter prior over the
data has no influence. The process of gaining invariance importantly does not
improve performance outright; but rather only in the face of geometric mismatch.
With perfect registration the class separation is su�ciently large that a prior on
the margin has no e↵ect on the discriminability of the decision hyperplane. It
is only with increasing registration error and increasing nonlinearity of the true



V1-Inspired Features Induce a Weighted Margin in SVMs 13

decision boundary that the prior helps guide the separating hyperplane to a good
solution.

Casting the prior in a lower dimensional space whilst retaining good perfor-
mance shows the function of features is more about generalisation than increasing
classifier capacity. This prior encodes information important in gaining invari-
ance to geometric variability with substantially lower capacity than a quadratic
kernel. Nonetheless, the results of experiments on MNIST (Figure 2(a)) and Cal-
tech 101 (Figure 2(b)) show that for a 60-fold decrease in dimensionality, the
rank D approximation to S su↵ers only a 0� 3% decrease in performance.

Insights aside, the crux of the rank reduction lies in its relationship to and
advantage over regular PCA. Because PCA is data dependent, it relies on an
explicit representation of the entire training set, and a strong a�nity between
the observed geometric variability in the training and testing sets. As the amount
and availability of crowd-sourced data increases, so too does the need for data-
independent dimensionality reduction schemes. The S matrix is data agnostic
and a rank reduction on this matrix is equivalent to an optimisation over the
most important frequency components and their spatial support. Further, we
show in Figure 3 that this approach is comparable with PCA. In essence, our
choice of filters conveys our intuition about what spatial and frequency content
is semantically important in images. A rank reduction on S acts to preserve the
most important parts of this prior.

In light of this, we end by making two comments: (i) the choice of filters
is still important as they constitute an assumed prior over the image statistics,
however (ii) rather than expressing the prior indirectly through filters (which are
not unique), we should consider treating the application of V1-inspired features
as a machine learning task with a prior on natural image statistics and directly
optimise for a weighted margin (which is unique) using conventional and well-
established machine learning techniques.

7 Conclusions and Future Work

This paper has presented a new form for V1-inspired features, with filter terms
decoupled from data terms. By integrating the learning strategy into the fea-
ture design, we reveal that the filter matrix prior acts to weight the margin in
an SVM with an implicit quadratic kernel capacity. We speculated from the re-
dundant eigenspectrum of this matrix that a low dimensional approximation to
this matrix should be able to approximate the same margin manipulation but
at greatly reduced computational cost, and showed this to be the case across a
range of visual classification tasks. This approach enables a data independent
dimensionality reduction scheme, appropriate for large-scale learning.

This work has freed the V1-inspired feature from its canonical parametrisa-
tion into a form more readily accepted by existing machine learning techniques.
This unleashes a wealth of new questions about the optimality of V1-inspired
features, the structure of S and the “best” weighting matrix.
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